Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
Network Repository is the first interactive data repository for graph and network data. It hosts graph and network datasets, containing hundreds of real-world networks and benchmark datasets. Unlike other data repositories, Network Repository provides interactive analysis and visualization capabilities to allow researchers to explore, compare, and investigate graph data in real-time on the web.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
The Virtual Research Environment (VRE) is an open-source data management platform that enables medical researchers to store, process and share data in compliance with the European Union (EU) General Data Protection Regulation (GDPR). The VRE addresses the present lack of digital research data infrastructures fulfilling the need for (a) data protection for sensitive data, (b) capability to process complex data such as radiologic imaging, (c) flexibility for creating own processing workflows, (d) access to high performance computing. The platform promotes FAIR data principles and reduces barriers to biomedical research and innovation. The VRE offers a web portal with graphical and command-line interfaces, segregated data zones and organizational measures for lawful data onboarding, isolated computing environments where large teams can collaboratively process sensitive data privately, analytics workbench tools for processing, analyzing, and visualizing large datasets, automated ingestion of hospital data sources, project-specific data warehouses for structured storage and retrieval, graph databases to capture and query ontology-based metadata, provenance tracking, version control, and support for automated data extraction and indexing. The VRE is based on a modular and extendable state-of-the art cloud computing framework, a RESTful API, open developer meetings, hackathons, and comprehensive documentation for users, developers, and administrators. The VRE with its concerted technical and organizational measures can be adopted by other research communities and thus facilitates the development of a co-evolving interoperable platform ecosystem with an active research community.
OrthoMCL is a genome-scale algorithm for grouping orthologous protein sequences. It provides not only groups shared by two or more species/genomes, but also groups representing species-specific gene expansion families. So it serves as an important utility for automated eukaryotic genome annotation. OrthoMCL starts with reciprocal best hits within each genome as potential in-paralog/recent paralog pairs and reciprocal best hits across any two genomes as potential ortholog pairs. Related proteins are interlinked in a similarity graph. Then MCL (Markov Clustering algorithm,Van Dongen 2000; www.micans.org/mcl) is invoked to split mega-clusters. This process is analogous to the manual review in COG construction. MCL clustering is based on weights between each pair of proteins, so to correct for differences in evolutionary distance the weights are normalized before running MCL.