Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 25 result(s)
Country
NODE (The National Omics Data Encyclopedia) provides an integrated, compatible, comparable, and scalable multi-omics resource platform that supports flexible data management and effective data release. NODE uses a hierarchical data architecture to support storage of muti-omics data including sequencing data, MS based proteomics data, MS or NMR based metabolomics data, and fluorescence imaging data. Launched in early 2017, NODE has collected and published over 900 terabytes of omics data for researchers from China and all over the world in last three years, 22% of which contains multiple omics data. NODE provides functions around the whole life cycle of omics data, from data archive, data requests/responses to data sharing, data analysis, data review and publish.
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
The Expression Atlas provides information on gene expression patterns under different biological conditions such as a gene knock out, a plant treated with a compound, or in a particular organism part or cell. It includes both microarray and RNA-seq data. The data is re-analysed in-house to detect interesting expression patterns under the conditions of the original experiment. There are two components to the Expression Atlas, the Baseline Atlas and the Differential Atlas. The Baseline Atlas displays information about which gene products are present (and at what abundance) in "normal" conditions (e.g. tissue, cell type). It aims to answer questions such as "which genes are specifically expressed in human kidney?". This component of the Expression Atlas consists of highly-curated and quality-checked RNA-seq experiments from ArrayExpress. It has data for many different animal and plant species. New experiments are added as they become available. The Differential Atlas allows users to identify genes that are up- or down-regulated in a wide variety of different experimental conditions such as yeast mutants, cadmium treated plants, cystic fibrosis or the effect on gene expression of mind-body practice. Both microarray and RNA-seq experiments are included in the Differential Atlas. Experiments are selected from ArrayExpress and groups of samples are manually identified for comparison e.g. those with wild type genotype compared to those with a gene knock out. Each experiment is processed through our in-house differential expression statistical analysis pipeline to identify genes with a high probability of differential expression.
MycoCosm, the DOE JGI’s web-based fungal genomics resource, which integrates fungal genomics data and analytical tools for fungal biologists. It provides navigation through sequenced genomes, genome analysis in context of comparative genomics and genome-centric view. MycoCosm promotes user community participation in data submission, annotation and analysis.
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
Country
The Small Molecule Pathway Database (SMPDB) contains small molecule pathways found in humans, which are presented visually. All SMPDB pathways include information on the relevant organs, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Accompanying data includes detailed descriptions and references, providing an overview of the pathway, condition or processes depicted in each diagram.
Country
InTOR is the institutional digital repository of the Institute of Virology, Vaccines and Sera “Torlak”. It provides open access to publications and other research outputs resulting from the projects implemented by the Institute of Virology, Vaccines and Sera “Torlak”. The software platform of the repository is adapted to the modern standards applied in the dissemination of scientific publications and is compatible with international infrastructure in this field.
GigaDB primarily serves as a repository to host data and tools associated with articles published by GigaScience Press; GigaScience and GigaByte (both are online, open-access journals). GigaDB defines a dataset as a group of files (e.g., sequencing data, analyses, imaging files, software programs) that are related to and support a unit-of-work (article or study). GigaDB allows the integration of manuscript publication with supporting data and tools.
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
The FAIRDOMHub is built upon the SEEK software suite, which is an open source web platform for sharing scientific research assets, processes and outcomes. FAIRDOM (Web Site) will establish a support and service network for European Systems Biology. It will serve projects in standardizing, managing and disseminating data and models in a FAIR manner: Findable, Accessible, Interoperable and Reusable. FAIRDOM is an initiative to develop a community, and establish an internationally sustained Data and Model Management service to the European Systems Biology community. FAIRDOM is a joint action of ERA-Net EraSysAPP and European Research Infrastructure ISBE.
Country
The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. It is intended to be used for applications in metabolomics, clinical chemistry, biomarker discovery and general education.
Rhea is a freely available and comprehensive resource of expert-curated biochemical reactions. It has been designed to provide a non-redundant set of chemical transformations for applications such as the functional annotation of enzymes, pathway inference and metabolic network reconstruction. There are three types of reaction participants (reactants and products): Small molecules, Rhea polymers, Generic compounds. All three types of reaction participants are linked to the ChEBI database (Chemical Entities of Biological Interest) which provides detailed information about structure, formula and charge. Rhea provides built-in validations that ensure both mass and charge balance of the reactions. We have populated the database with the reactions found in the enzyme classification (i.e. in the IntEnz and ENZYME databases), extending it with additional known reactions of biological interest. While the main focus of Rhea is enzyme-catalysed reactions, other biochemical reactions (including those that are often termed "spontaneous") also are included.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
Country
FANTOM stands for 'Functional Annotation of the Mammalian Genome' and is the name of an international research consortium organized by the RIKEN Omics Science Center. The FANTOM5 project aims to build a full understanding of transcriptional regulation in a human system by generating transcriptional regulatory networks that define every human cell type.
Country
BacDive is a bacterial metadatabase that provides strain-linked information about bacterial and archaeal biodiversity. The database is a resource for different kind of phenotypic data like taxonomy, morphology, physiology, environment and molecular-biology. The majority of data is manually annotated and curated. With the release in April 2019 BacDive offers information for 80,584 strains. The database is hosted by the Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH and is part of de.NBI the German Network for Bioinformatics Infrastructure.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.