Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> A human interactome map. The sequencing of the human genome has provided a surprisingly small number of genes, indicating that the complex organization of life is not reflected in the gene number but, rather, in the gene products – that is, in the proteins. These macromolecules regulate the vast majority of cellular processes by their ability to communicate with each other and to assemble into larger functional units. Therefore, the systematic analysis of protein-protein interactions is fundamental for the understanding of protein function, cellular processes and, ultimately, the complexity of life. Moreover, interactome maps are particularly needed to link new proteins to disease pathways and the identification of novel drug targets.
Born of the desire to systematize analyses from The Cancer Genome Atlas pilot and scale their execution to the dozens of remaining diseases to be studied, GDAC Firehose now sits atop terabytes of analysis-ready TCGA data and reliably executes thousands of pipelines per month. More information: https://broadinstitute.atlassian.net/wiki/spaces/GDAC/
Reactome is a manually curated, peer-reviewed pathway database, annotated by expert biologists and cross-referenced to bioinformatics databases. Its aim is to share information in the visual representations of biological pathways in a computationally accessible format. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology.
<<<!!!<<< This repository is no longer available. >>>!!!>>> NetPath is currently one of the largest open-source repository of human signaling pathways that is all set to become a community standard to meet the challenges in functional genomics and systems biology. Signaling networks are the key to deciphering many of the complex networks that govern the machinery inside the cell. Several signaling molecules play an important role in disease processes that are a direct result of their altered functioning and are now recognized as potential therapeutic targets. Understanding how to restore the proper functioning of these pathways that have become deregulated in disease, is needed for accelerating biomedical research. This resource is aimed at demystifying the biological pathways and highlights the key relationships and connections between them. Apart from this, pathways provide a way of reducing the dimensionality of high throughput data, by grouping thousands of genes, proteins and metabolites at functional level into just several hundreds of pathways for an experiment. Identifying the active pathways that differ between two conditions can have more explanatory power than just a simple list of differentially expressed genes and proteins.
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> The main objective of our work is to understand the pathomechanisms of late onset neurodegenerative disorders such as Huntington's, Parkinson's, Alzheimer's and Machado Joseph disease and to develop causal therapies for them. The disease causing proteins of these illnesses have been identified, but their functions in the unaffected organism are mostly unknown. Here, we have developed a strategy combining library and matrix yeast two-hybrid screens to generate a highly connected PPI network for Huntington's disease (HD).
The European Variation Archive is an open-access database of all types of genetic variation data from all species. The EVA provides access to highly detailed, granular, raw variant data from human, with other species to follow. As of September 2017, EMBL-EBI will maintain reliable accessions for non-human genetic variation data through the European Variation Archive (EVA). NCBI's dbSNP database will continue to maintain stable identifiers for human genetic variation data only. This change will enable a more rapid turnaround for data sharing in this burgeoning field.
<<<!!!<<< Efforts to obtain renewed funding after 2008 were unfortunately not successful. PANDIT has therefore been frozen since November 2008, and its data are not updated since September 2005 when version 17.0 was released (corresponding to Pfam 17.0). The existing data and website remain available from these pages, and should remain stable and, we hope, useful. >>>!!!>>> PANDIT is a collection of multiple sequence alignments and phylogenetic trees. It contains corresponding amino acid and nucleotide sequence alignments, with trees inferred from each alignment. PANDIT is based on the Pfam database (Protein families database of alignments and HMMs), and includes the seed amino acid alignments of most families in the Pfam-A database. DNA sequences for as many members of each family as possible are extracted from the EMBL Nucleotide Sequence Database and aligned according to the amino acid alignment. PANDIT also contains a further copy of the amino acid alignments, restricted to the sequences for which DNA sequences were found.
PSnpBind is a large database of protein–ligand complexes covering a wide range of binding pocket mutations and small molecules’ landscape. This database can be used as a source of data for different types of studies, for example, developing machine learning algorithms to predict protein–ligand affinity or mutation's effect on it which requires an extensive amount of data with a wide coverage of mutation types and small molecules. Also, studies of protein-ligand interactions and conformer orientation changes across different mutated versions of a protein can be established using data from PSnpBind.
<<<!!!<<< Retirement of UniProt Metagenomic and Environmental Sequences (UniMES): UniProt has retired UniMES as there is now a resource at the EBI that is dedicated to serving metagenomic researchers. Henceforth, we recommend using the EBI Metagenomics portal instead https://www.ebi.ac.uk/metagenomics/ . In addition to providing a repository of metagenomics sequence data, EBI Metagenomics allows you to view functional and taxonomic analyses and to submit your own samples for analysis. >>>!!!>>> The UniProt Metagenomic and Environmental Sequences (UniMES) database is a repository specifically developed for metagenomic and environmental data. We provide UniMES clusters in order to obtain complete coverage of sequence space at different resolutions.